问题1:克莱姆法则中的D1D2D3D4的式子是怎么列出来的啊 没看懂 希望解释一下。
D1就是把D中的第1列的数, 换成方程组等号右边的数。
D2就是把D中的第2列的数, 换成方程组等号右边的数。
克莱姆法则:是将方程组等式右侧的向量,替换到系数矩阵的第几行,得到新的行列式。
假若有n个未知数,n个方程组成的方程组: 克莱姆法则
a11X1+a12X2+...+a1nXn = b1
a21X1+a22X2+...+a2nXn = b2
an1X1+an2X2+...+annXn = bn
扩展资料:
一般来说,用克莱姆法则求线性方程组的解时,计算量是比较大的。使用克莱姆法则求线性方程组的解的算法时间复杂度依赖于矩阵行列式的算法复杂度O(f(n)),其复杂度为O(n·f(n)),一般没有计算价值,复杂度太高。. 对具体的数字线性方程组,当未知数较多时往往可用计算机来求解。用计算机求解线性方程组目前已经有了一整套成熟的方法。
参考资料来源:百度百科-克莱姆法则
问题2:克拉默法则公式是什么?
克拉默法则解方程组过程如下:先求系数行列式,再求各未知数对应的行列式,相除得到方程的解。克莱姆法则,又译克拉默法则是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年。
在他的《线性代数分析导言》中发表的。其实莱布尼兹,以及马克劳林亦知道这个法则,但他们的记法不如克莱姆。具体公式如下图。
克拉默法则
克莱姆1704年7月31日生于日内瓦,早年在日内瓦读书,1724 年起在日内瓦加尔文学院任教,1734年成为几何学教授,1750年任哲学教授。他自 1727年进行为期两年的旅行访学。在巴塞尔与约翰伯努利、欧拉等人学习交流,结为挚友。
后又到英国、荷兰、法国等地拜见许多数学名家,回国后在与他们的长期通信 中,加强了数学家之间的联系,为数学宝库也留下大量有价值的文献。他一生未婚,专心治学,平易近人且德高望重,先后当选为伦敦皇家学会、柏林研究院和法国、意大利等学会的成员。
主要著作是《代数曲线的分析引论》(1750),首先定义了正则、非正则、超越曲线和无理曲线等概念,第一次正式引入坐标系的纵轴(Y轴),然后讨论曲线变换,并依据曲线方程的阶数将曲线进行分类。
为了确定经过5 个点的一般二次曲线的系数,应用了著名的“克莱姆法则”,即由线性方程组的系数确定方程组解的表达式。该法则于1729年由英国数学家马克劳林得到,1748年发表,但克莱姆的优越符号使之流传。
问题3:克拉默法则解方程组
D=D1=D2=D3=D4=-70
做行交换和行相加的时候可以几个一起算,相当于对原方程组进行初等变换,不影响行列式的值。算行列式的时候细心一点就可以了。
问题4:线性代数克莱姆法则求解
记系数矩阵为 A,常数列代替 A 的第 i 列得到的矩阵 Bi (i = 1, 2, 3, 4)。先计算A, B1, B2, B3, B4 的行列式,如图:
根据 Cramer 法则得到方程的解:
望。
问题5:线性代数公式是什么?
线性代数公式是:(AB)^T=(B^T)(A^T),(AB)^(-1)=[B^(-1)][A^(-1)]。
两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为:a·b=a1b1+a2b2+……+anbn。使用矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为:a·b=a^T*b,这里的a^T指示矩阵a的转置。
重要定理
每一个线性空间都有一个基。
对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵(或称可逆矩阵),B为A的逆阵。
1、矩阵非奇异(可逆)当且仅当它的行列式不为零。
2、矩阵非奇异当且仅当它代表的线性变换是个自同构。
3、矩阵半正定当且仅当它的每个特征值大于或等于零。
4、矩阵正定当且仅当它的每个特征值都大于零。
5、解线性方程组的克拉默法则。
6、判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。
问题6:克拉默法则是什么
克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。
克拉默法则有两种记法:
1、记法1:若线性方程组的系数矩阵可逆(非奇异),即系数行列式 D≠0。有唯一解,其解为
2、记法2:若线性方程组的系数矩阵可逆(非奇异),即系数行列式 D≠0,则线性方程组⑴有唯一解,其解为
其中Dj是把D中第j列元素对应地换成常数项而其余各列保持不变所得到的行列式。
记法1是将解写成矩阵(列向量)形式,而记法2是将解分别写成数字,本质相同。
扩展资料
一、克莱姆的主要成就:
克莱姆的主要著作是《代数曲线的分析引论》(1750 [1] ),首先定义了正则、非正则、超越曲线和无理曲线等概念,第一 次正式引入坐标系的纵轴(Y轴),然後讨论曲线变换,并依据曲线方程的阶数将曲线进行分类。
为了确定经过5 个点的一般二次曲线的系数,应用了著名的“克莱姆法则”,即由线性方程组的系数确定方程组解的表达式。该法则於1729年由英国数学家马克劳林(Maclaurin,Colin,1698~1746)得到,1748年发表,但克莱姆的优越符号使之流传。他还提出了“克莱姆悖论”。
二、克拉默法则的证明:
1、充分性:设A可逆,那么显然
是
的一个解。又设X1是
其他不为X0的解,即
两边同时左乘A-1得
上面两式矛盾,因为不存在其他不为X0的解,故
是的一个解。
2、必要性:设
的唯一解X0。如A不可逆,齐次线性组AX=O就有非零解Y0,
X0+Y0也是
的一个解,矛盾,故不可逆,证毕。
参考资料来源:百度百科——克拉默法则
参考资料来源:百度百科——克莱姆
问题7:克拉默法则公式
克拉默法则公式是线性代数中一个关于求解线性方程组的定理。它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704—1752)于1750年,在他的《线性代数分析导言》中发表的。
克莱姆(Cramer,Gabriel,瑞士数学家1704-1752)克莱姆1704年7月31日生于日内瓦,早年在日内瓦读书,1724年起在日内瓦加尔文学院任教,1734年成为几何学教授,1750年任哲学教授。
他自1727年进行为期两年的旅行访学。在巴塞尔与约翰.伯努利、欧拉等人学习交流,结为挚友。
后又到英国、荷兰、法国等地拜见许多数学名家,回国后在与他们的长期通信中,加强了数学家之间的联系,为数学宝库也留下大量有价值的文献。
他一生未婚,专心治学,平易近人且德高望重,先后当选为伦敦皇家学会、柏林研究院和法国、意大利等学会的成员。
最后,你如何评价克拉默?欢迎下面互动!想了解更多精彩内容,快来关注本站吧。